USP
Universidade de São Paulo

Leandro Helgueira de Andrade

Professor Associado - Departamento de Química Fundamental
Enzimas como ferramentas sintéticas
3091-2287 
 leandroh@iq.usp.br

Tópicos abordados em pesquisa nos últimos 5 anos (link para página do nosso grupo de pesquisa)

 

Produção Científica

Currículo (Sistema Lattes - CNPq)

Currículo (Sistema Researcher ID)

 

A- Imobilização de enzimas/células em materiais funcionais (Revisões e Artigos)

1- Kisukuri, C. M. and Andrade, L. H. Production of chiral compounds using immobilized cells as source of biocatalysts. Org. Biomol. Chem., 2015, Advance Article

http://dx.doi.org/10.1039/C5OB01677K

2- Andrade, L. H. et al. Contributions on Kinetic Resolution by Lipases on the Development of Organic Synthesis in Brazil. Current Organic Synthesis, 2015, 12, 696-713.

http://dx.doi.org/10.2174/157017941206150828103404

3- Netto, C.G.M. et al. Association of Pseudomonas putida formaldehyde dehydrogenase with superparamagnetic nanoparticles: an effective way of improving the enzyme stability, performance and recycling. New J. Chem., 2015, 39, 2162-2167.

http://dx.doi.org/10.1039/C4NJ01716A

4- Kisukuri, C. M. et al. Bimetallic nanoshells as platforms for metallo- and bio-metallo catalytic applications. ChemCatChem, 2015, accepted manuscript.

5- Andrade, L. H. et al. Continuous Flow Synthesis of Chiral Amines in Organic Solvents: Immobilization of Cells Containing Both ω-Transaminase and PLP. Org. Lett., 2014, 16 (23), 6092–6095.

http://dx.doi.org/10.1021/ol502712v

6- Netto, C.G.M. et. al. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J. Mol. Catal. B Enzym., 2013, 85-86, 71-92.

http://dx.doi.org/10.1016/j.molcatb.2012.08.010

7- Kisukuri, C. M. et al. Investigating the Influence of the Interface in Thiol-Functionalized Silver-Gold Nanoshells over Lipase Activity. Langmuir, 2013, 29, 15974-15980.

http://pubs.acs.org/doi/abs/10.1021/la404081n

8- Netto, C.G.C.M. et al. Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles. J. Mol. Catal. B-Enzym., 2012, 84, 136-143.

http://dx.doi.org/10.1016/j.molcatb.2012.03.021

  

B- Reatividade de hetero-compostos com enzimas

1- Palmeira, D. J. et al. Application of a promiscuous Arthrobacter sp. from Antarctic in aerobic (R)-selective deracemization and anaerobic (S)-selective reduction. J. Mol. Catal. B-Enzym., 2014110, 117-125.

http://dx.doi.org/10.1016/j.molcatb.2014.09.016

2- Reis, J. S. et al. Asymmetric reductive amination of boron-containing aryl-ketones using ω-transaminases. Tetrahedron-Asymmetry, 2013, 24, 1495-1501.

http://dx.doi.org/10.1016/j.tetasy.2013.10.004

3- Reis, J. S. and Andrade L. H. Lipase-catalyzed kinetic resolution of beta-borylated carboxylic esters. Tetrahedron-Asymmetry, 2012, 23, 1294-1300.

http://dx.doi.org/10.1016/j.tetasy.2012.08.011

4- Brondani, P. B. et al. Chemoenzymatic approaches to obtain chiral centered-selenium compounds. Tetrahedron, 2012, 23, 703-708.

http://dx.doi.org/10.1016/j.tetasy.2012.05.004

5- Brondani, P. B. et al. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation. Tetrahedron-Asymmetry, 2012, 23, 703-708.

http://dx.doi.org/10.1016/j.tetasy.2012.05.004

6- Barcellos, T. et al. Stereocomplementary asymmetric bioreduction of boron-containing ketones mediated by alcohol dehydrogenases. Tetrahedron-Asymmetry, 2011, 22, 1772-1777.

http://dx.doi.org/10.1016/j.tetasy.2011.10.012

7- Palmeira, D. J. et al. Lipase-Catalyzed Kinetic Resolution of Aryltrimethylsilyl Chiral Alcohols. Molecules, 2011, 16, 9697-9713.

http://dx.doi.org/10.3390/molecules16119697

8- Andrade, L. H. et al. Oxidation of organoselenium compounds. A study of chemoselectivity of phenylacetone monooxygenase. J. Mol. Catal. B-Enzym., 2011, 73, 63-66.

http://dx.doi.org/10.1016/j.molcatb.2011.07.018

9- Brondani, P. B. et al. Selective Oxidations of Organoboron Compounds Catalyzed by Baeyer-Villiger Monooxygenases. Adv. Synth. Catal.2011353, 2169-2173.

http://dx.doi.org/10.1002/adsc.201100029

 

C- Prospecção de enzimas

1- Rodrigues, C. et al. Exploiting the enzymatic machinery of Arthrobacter atrocyaneus for oxidative kinetic resolution of secondary alcohols. J. Mol. Catal. B-Enzym., 2012, 83, 23-28.

http://dx.doi.org/10.1016/j.molcatb.2012.06.013

2- Araújo, L. S. et al. Screening of Microorganisms Producing Cold-Active Oxidoreductases to Be Applied in Enantioselective Alcohol Oxidation. An Antarctic Survey. Mar. Drugs, 2011, 9, 889-905.

http://dx.doi.org/10.3390/md9050889

 

D- Inibidores enzimáticos

1- Silva, M. S. and Andrade, L. H. 77Se and 125Te NMR Spectroscopy on Selectivity Study of Organochalcogenanes with L-amino acids. Org. Biomol. Chem.2015, 13, 5924-5929.

http://dx.doi.org/10.1039/C5OB00373C

2- Piovan, L. et al. 20S proteasome as novel biological target for organochalcogenanes. Eur. J. Med. Chem.201473, 280-285.

http://dx.doi.org/10.1016/j.ejmech.2013.12.011

3- Andrade, L. H. et al. Synthesis of L-cysteine-based boron compounds and their evaluation as proteasome inhibitors. New J. Chem.201438, 4859-4871.

http://dx.doi.org/10.1039/c4nj00612g

4- Piovan, L. et al. Hypervalent organochalcogenanes as inhibitors of protein tyrosine phosphatases.  Org. Biomol. Chem.20119, 1347-1351.

http://dx.doi.org/10.1039/c0ob01050b

5- Piovan, L. et al. Structure-Activity Relationships of Hypervalent Organochalcogenanes as inhibitors of cysteine cathepsins V and S. Bioorgan. Med. Chem.201119, 2009-2014.

http://dx.doi.org/10.1016/j.bmc.2011.01.054